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ABSTRACT

Genes and proteins form complex dynamical sys-

tems or gene regulatory networks (GRN) that can

reach several steady states (attractors). These may

be associated with distinct cell types. In plants, the

ABC combinatorial model establishes the necessary

gene combinations for floral organ cell specifica-

tion. We have developed dynamic gene regulatory

network (GRN) models to understand how the

combinatorial selection of gene activity is estab-

lished during floral organ primordia specification as

a result of the concerted action of ABC and non-

ABC genes. Our analyses have shown that the

floral organ specification GRN reaches six attractors

with gene configurations observed in primordial

cell types during early stages of flower development

and four that correspond to regions of the inflo-

rescence meristem. This suggests that it is the

overall GRN dynamics rather than precise signals

that underlie the ABC model. Furthermore, our

analyses suggest that the steady states of the GRN

are robust to random alterations of the logical

functions that define the gene interactions. Here we

have updated the GRN model and have systemati-

cally altered the outputs of all the logical functions

and addressed in which cases the original attractors

are recovered. We then reduced the original three-

state GRN to a two-state (Boolean) GRN and per-

formed the same systematic perturbation analysis.

Interestingly, the Boolean GRN reaches the same

number and type of attractors as reached by the

three-state GRN, and it responds to perturbations in

a qualitatively identical manner as the original

GRN. These results suggest that a Boolean model is

sufficient to capture the dynamical features of the

floral network and provide additional support for

the robustness of the floral GRN. These findings

further support that the GRN model provides a

dynamical explanation for the ABC model and that

the floral GRN robustness could be behind the

widespread conservation of the floral plan among

eudicotyledoneous plants. Other aspects of evolu-

tion of flower organ arrangement and ABC gene

expression patterns are discussed in the context of

the approach proposed here.
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INTRODUCTION

Gene interactions are prevalent and key during

development, and thus development may bias, re-

strict, or mediate the variation that evolutionary

forces may act on. Therefore development should be

explicitly considered in evolutionary models that

aim at understanding the origin and evolutionary

dynamics of phenotypical traits (Lewontin 1974;

Salazar-Ciudad and others 2000).

Complex networks of interacting components at

different levels of biological organization are being

uncovered at the molecular level. Genes and pro-

teins form complex dynamical systems or gene

regulatory networks (GRN) that can reach several

steady states (attractors; Figure 1). These have been

associated with distinct cell types (Kauffman 1969),

and this proposition has been recently supported

experimentally (Acar and others 2005; Huang and

others 2005). Our aim is to contribute to a general

framework for understanding the interplay between

the structure, function, and evolution of GRN and

their role in pattern formation that is central for

understanding development.

The approach we have followed has been to

construct and validate qualitative models of specific

biological processes that have been functionally

characterized. The long-term aim is to infer novel

and general regulatory principles of cellular net-

works by analyzing the structural and dynamical

features of the specific gene regulatory networks

studied and modeled. We think that this approach

will complement the more theoretical ones that aim

at uncovering general principles for network

assemblage and dynamics using mathematical and

simulation models or intend to infer global GRN

architectures relying on functional genomics data.

All approaches should provide feedback and com-

plement one another.

Structural and dynamical analyses of well-char-

acterized subnetworks grounded on solid experi-

mental data are also useful to integrate

experimental data and to find holes and inconsis-

tencies in such data. Gene regulatory network

models grounded on experimental data are also

important to validate inferences of network con-

nectivity from functional genomic data. Indeed, the

network that we proposed for cell fate determina-

tion during floral organ specification (Mendoza and

Alvarez-Buylla 1998) has been used by several

researchers to validate methods of GRN architecture

inference (Perkins and others 2004; Aracena and

Demongeot 2004).

We have focused on plant systems to pursue our

aims. In plants, multicellularity evolved indepen-

dently from animals. A comparative approach of

multicellular development in its broadest sense

should therefore consider plant as well as animal

systems (Meyerowitz 2002). Moreover, plants are

relatively simpler than animals in their cellular

organization, and therefore it will be more feasible

to propose models that scale from network behavior

to cell and morphogenetic patterns. Within plants,

comparative analyses of networks controlling cell-

fate determination or pattern formation may help

uncover subnetworks that have been fairly fixed

during evolution, modules that are co-opted for

several cell-fate determination functions within or

among plant species, and critical network motifs or

subnetworks underlying important functions and

evolutionary innovations.

The ABC�s of Flower Development

Flowers are the most complex and showy multicel-

lular structures of angiosperms, and they have at-

tracted the attention of many researchers. Upon

induction to flowering, the shoot apical meristem

that only produces vegetative structures from its

flanks turns into an inflorescence meristem that also

produces flowers. Adult floral morphology origi-

nates from floral meristems that arise from the flanks

of the inflorescence meristem in a spiral arrange-

ment. One day after flower induction a flower but-

tress arises, and 1.25 days afterwards the flower

primordium forms in the flanks of each floral meri-

stem. The sepal primordia arise first in the periphery

of the floral meristem at stage three (3 days) of

flower development; then the petal and stamen

primordia appear in the second and third whorls,

respectively, almost simultaneously. Last, the carpel

primordium is formed from the remaining central

portion of the floral meristem (Bowman 1994).

Thus, a few days after flower induction, the floral

meristem is partitioned into four regions, each
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composed of primordial sepal, petal, stamen, and

carpel cells that are sequentially differentiated from

the outer whorl to the center of the meristem. Floral

organ primordia continue to grow and differentiate

into the distinct cell types that constitute each of the

mature floral organs. The models that we have

developed refer to the GRN that underlie primordial

cell fate determination and hence underlie the

combinatorial gene activities that characterize the

four regions into which the flower meristem is

partitioned during the early stages of flower devel-

opment.

A wealth of data on the molecular genetic

mechanisms underlying different aspects of flower

development have accumulated during the last 15

years (Coen and Meyerowitz 1991). The genes

controlling cell fate determination during floral

organ specification have yielded the ABC model of

flower development that was derived from genetic

analyses of floral organ homeotic mutants in two

plant study systems: Antirrhinum majus L. and

Arabidopsis thaliana (L.) Heynh. (Coen and Meye-

rowitz 1991). These species have the stereotypical

floral arrangement of almost all eudicotyledoneous

species (see Vergara-Silva and others 2003; Am-

brose and others 2006 for an exception), with sepals

in the outermost whorl, then petals, stamens, and

carpels in the flower center. The ABC model states

that the identities of the floral organ types are

established by combinations of genes grouped in

three main classes, A, B, and C. A genes alone

determine sepal identity; A plus B, petal identity;

B plus C, stamen identity; and C alone, carpel

identity (Figure 1). However, the ABC model does

not provide an explanation for how such combi-

natorial selection of gene activity is established

during floral organ primordia specification, and how

the spatiotemporal pattern of ABC and non-ABC

gene expression is established. Furthermore, the

conserved pattern of floral organ determination and

also the overall conservation of the ABC gene pat-

terns of expression among eudicotyledoneous spe-

cies suggest a robust mechanism underlying such

combinatorial selection of gene activities. The ABC

model by itself does not provide an explanation for

such robustness either. We have been developing

qualitative GRN models for tackling these questions

Discrete Gene Regulatory Network
Models: The Formalism

Regulatory network models are abstractions of the

multiple regulatory interactions among genes dur-

ing cell-fate determination and pattern formation.

Each gene undergoes a network of mRNA tran-

scription, translation, protein modifications, and

protein transport until its final functional destiny.

Most data available for plant development is at the

transcriptional regulatory level, although recent

findings suggest that miRNA regulation is important

during plant development (Chen 2004).

Gene regulatory network models may incorpo-

rate continuous or discrete functions for the gene-

Figure 1. Floral structure of Arabid-

opsis thaliana, ABC model and GRN.

(A) Basin of attraction of the petal-2

point attractor. (B) Pattern of expres-

sion of the genes, where 0 means ‘‘off’’

and 1 means ‘‘on.’’ (C) The same

pattern depicted on the network; the

dark circles indicate that the corre-

sponding node is ‘‘on’’ and the rest

are ‘‘off.’’ (D) The pattern of petal-2

corresponds to the overlapping activity

of A + B genes. (E) The structure

emerging from this pattern of activity:

petals are depicted in red in the longi-

tudinal and radial floral diagrams.
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activation kinetics. Because the temporal scales of

the molecular processes of the pathway that goes

from DNA transcription to protein function are

relatively short in comparison to those of the pro-

cesses of pattern formation, it is reasonable to focus

only on the qualitative regulatory interactions.

Continuous implementations can incorporate more

detail and can yield quantitative predictions. How-

ever, experimental data that provide estimates

of such models are lacking. Furthermore, formal

analyses of equivalent continuous and discrete

models have analytically shown that both yield

equivalent results (Thomas and others 1995). Fur-

thermore, in systems of many components with

many non-linearities, the behavior of the system

depends mostly on the qualitative aspects of the

GRN topology rather than on the kinetic details for

each interaction and component. Therefore, we

postulate models that assume discrete functions for

the kinetics of gene activation. In the simplest case,

Boolean functions that may only have two values: 0

(‘‘off’’) or 1 (‘‘on’’) are assumed. The activity of

each gene depends on updating rules that are for-

malized as logical functions grounded on experi-

mental data. Boolean models have also been

successfully used in animal systems. For example,

Albert and Othmer (2003) have shown that a

Boolean GRN recovers the same patterns for the

Drosophila melanogaster segment polarity genes as

those recovered by a continuous model (Von

Dassow and others 2000) analysis that had already

been shown to be robust to parameter perturbations.

Discrete models are further justified because re-

cent experimental evidence suggests that gene

expression is digital and stochastic at the individual

cell level rather than continuous. In cell aggregates,

gene expression may appear to change continu-

ously as an inductive signal increases. However,

recent experimental data at the individual cell level

suggests that it is the probability of a particular

template to be active within a certain time window,

rather than the rate of transcription from this

template, that seems to be subject to regulation.

Hence, genes within individual cells have a distinct

probability of responding to a given concentration

of stimulus of transcription, and the gene is either

‘‘on’’ or ‘‘off’’ in a certain time window (Hume

2000; Ozbudak and others 2002; Elowitz and others

2002; Blake and others 2003; Paulsson 2004;

Walters and others 1995; Fiering and others 2000;

Ho and others 1996). Rossi and collaborators (2000)

have proposed a mechanism that is necessary and

sufficient to account for the binary response in

inducible gene expression that proposes that for

each site in a promoter region there are transcrip-

tion factors with opposing functions (for example,

activation and repression) for the same target pro-

moter motif.

Since their proposal (Kauffman 1969), random

Boolean networks (RBN) have successfully de-

scribed in a qualitative way several important

aspects of gene regulation and cell differentiation

processes (Kauffman 1993, 1995). Discrete GRN

grounded on experimental data have been inspired

in the RBN, but in experimentally grounded GRN

genes are not connected by chance as in a RBN.

Recent data are suggesting that the connectivity of

real GRN obeys a power law (Aldana and Cluzel

2003). The type of discrete GRN models that we are

developing consist of a set of discrete variables,

�1, �2,...,�N, each acquiring a discrete value corre-

sponding to the two states of gene expression. The

state of each gene is regulated by a set of K other

genes, �n1, �n2,...,�nK, according to logical rules that

are grounded on experimental data (see example in

Espinosa-Soto and others 2004). The network

dynamics are then given by:

en t þ 1ð Þ ¼ fn en1 tð Þ; :::; enK tð Þð Þ;

where fn is a logical rule associated with the nth

element of the network. These rules are derived

from experimental data.

A particular GRN has a large number of possible

gene activity configurations or states, and each one

always leads to another state or to itself, in which

case that state is a point attractor (steady state).

Eventually all states, the W space, will reach an

attractor. A system may have more than one

attractor. The set of all states that lead to a specific

attractor is the basin of that attractor. The basins of

attraction and attractors of a GRN depend on the

number of elements, the number of possible states

of each element, the topology of the network, and

on the logical rules of each gene (Figure 2). Con-

sequently, the dynamics of the system are deter-

ministic, a condition in which the fates of all states

are known.

Gene Regulatory Network Models for
Arabidopsis thaliana (L.) Heynh. Cell
Type Determination during Organ
Type Specification

We are interested in understanding the GRN struc-

ture and dynamics underlying cell-fate determina-

tion during floral organ specification. We have

mainly focused on Arabidopsis thaliana, for which

most data are available. On a first approach, Men-
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doza and Alvarez-Buylla (1998) proposed a GRN

dynamic model with 11 nodes that included ABC

and non-ABC genes that attained six attractors that

corresponded to the genetic activities proposed in

the ABC model. However, in this first model there

was circularity in the interaction weights estimates,

and some attractors did not correspond to observed

gene activity combinations. Mendoza and collabo-

rators (1999) then analyzed the dynamic behavior

of the same model in terms of positive and negative

feedback circuits. Interestingly, they recovered the

same attractors as the ones found in their first ap-

proach, and they were able to identify the func-

tional positive feedback loops underlying such

attractors. However, once again interaction param-

eters were not grounded on experimental data.

Nonetheless, this latter approach shows that posi-

tive regulatory circuits play a central role in cell

differentiation and that modularity that may be

described in terms of functional loops is a central

characteristic of GRN (Thieffry and Sánchez 2004).

It is also useful to detect possible missing nodes and/

or connections that could form additional functional

positive loops with nodes within the GRN or in

other GRN that could explain observed gene con-

figurations or cell behaviors (Thomas 1991).

Recently, in Espinosa-Soto and collaborators

(2004), we integrated all available data on ABC and

non-ABC genes in a GRN model of 15 nodes that

significantly improves previous studies on GRN

modeling for flower organ specification in our lab-

oratory. The GRN was modeled as a three-state

discrete model to capture all the experimental data

at hand, and the problem of circularity was avoided

by explicitly establishing the logical rules based on

the experimental data available. The updating was

assumed synchronous, making it possible to avoid

subjective interpretations concerning the temporal

order with which genes are actualized. Of the total

number of initial combinations (139,968), the net-

work attained only 10 states, which coincide with

the gene-expression profiles documented experi-

mentally in cells of A. thaliana inflorescence meris-

tems and floral organ primordia, and it also

reproduces mutants� gene-expression patterns.

These data suggest that the gene regulatory

model incorporates the key components of a

developmental module or subnetwork that under-

lies the combinatorial gene activities predicted in

the ABC model. Thus it provides a dynamical

explanation for the ABC model of floral organ

determination, showing that precise signaling

pathways are not required to restrain organ pri-

mordia cell types during A. thaliana flower devel-

opment. Our model suggests that these are rather

determined by overall gene network topology and

dynamics. This was confirmed by robustness anal-

yses of random perturbations of gene-interaction

parameters (Espinosa-Soto and others 2004).

One value of the approach that we pursue is that it

provides an opportunity to integrate all previously

published experimental evidence on particular ge-

netic interactions, and this might aid in detecting

contradictions and holes in the experimental evi-

dence, as well as guiding functional genomic

approaches. Although our GRN studies are not his-

torical accounts of all work that has been done, but

rather a formal qualitative model of the behavior of

the gene network that regulates floral organ cell

differentiation, the work should nonetheless incor-

porate the critical evidence for each interaction.

Since we published the Espinosa-Soto and others

(2004) article we have detected a few instances in

which some key research papers that first docu-

mented a particular interaction were not cited, and

we update these cases here. We have also detected a

few minor errors in the article of Espinosa-Soto and

others (2004). We list the additions and corrections

in Appendix 1 and show that these do not affect the

model or the study results in any way.

Figure 2. Basins of attraction and

point attractors of the four floral pri-

mordial cell types (sepal, petal, stamen,

and carpel) around the flower diagram

for A. thaliana. (A) Boolean network

model. (B) Three-state network model.

The basins of attraction end in the point

attractors that correspond to gene

expression profiles that characterize

sepal (lower right), petal (upper left),

stamen (lower left), and carpel (upper

right) primordial cells in both A and B.

Note that the state space is much larger

in the second case.
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Updated Floral Network Structure
and Dynamics: Predictions Met and
New Interactions

We present here an updated GRN for cell-fate

determination during floral organ specification

(Figure 3). Two recent experimental findings

confirmed two predictions made by our analyses

(Espinosa-Soto and others 2004). A publication that

came out during the review process of our work

showed that the SEP1, 2, 3 genes are indeed acti-

vated by LFY (Schmid and others 2003). We had

predicted that a floral meristem identity gene

should activate the SEP, or an inflorescence identity

gene should repress them. We had postulated that

TFL1 repressed them. Hence, we have now deleted

this interaction and instead postulated that LFY

activates SEP (Figure 3; detailed tables of logical

rules are available on request). Second, we had

predicted that AG should have a positive direct or

indirect feedback loop, and this has been confirmed

in a recent article (Gómez-Mena and others 2005).

New experimental evidence suggests that the

activity of AP2 is postranscriptionally repressed by a

specific miRNA (Chen 2004), whose abundance

depends on the activity of the DICER-like protein

HUA ENHANCER 1 (HEN1, Park and others 2002).

However, even though HEN1 is expressed

throughout the plant (Chen and others 2002),

miRNA-dependent AP2 repression seems to occur

only in the inner floral whorls (Chen 2004). This

suggests that a cofactor, expressed in the inner floral

whorls, is required to give specificity to HEN1-

dependent repression of AP2. One possibility is that

this cofactor is downstream of AG activity, sup-

porting the mutual repression by A and C genes,

proposed in the original ABC model (Coen and

Meyerowitz 1991). We tested this possibility in our

model. Because HEN1 is expressed throughout the

plant, we can consider it to be permanently ‘‘on,’’

and hence it is only required to add, in the AP2

logical rules, that the inactivity of AG is needed for

AP2 function. The only change we observed in this

simulation was that in the carpel and stamen

attractors AP2 is ‘‘off.’’

Because both systems—the one that considers

AP2 repression by AG and the one that does

not—are so similar, we decided to work with the

latter to avoid what may be unrealistic assumptions.

It has also been found that FT expression favors

SEP3 and FUL activity (Teper-Bamnolker and

Samach 2005). However, these interactions could

be mediated by genes such as LFY and TFL1, and

because this explanation is more parsimonious, we

decided to avoid these additional interactions.

Interestingly, the updated GRN behavior is al-

most identical to that of the previously published

(Espinosa-Soto and others 2004) network. We ob-

tained the same number of point attractors as in the

previous network. All the basins of attraction are of

the same size and contain the same set of initial

conditions as in the previous GRN, except for the

sepal and the petal-1 basins, in which eight states of

the petal-1 basin now belong to the sepal basin.

Reduction of the Three-state to a
Boolean GRN

The original network had three states for some

genes: inactive (0), medium active (1), and active

(2). We reduced this three-state GRN to a Boolean

network. We performed this analysis as an addi-

tional robustness analysis and also to test if it is

useful to incorporate intermediate levels of gene

activity (see Appendix 2 for details in GRN reduc-

tion). Although it is obvious that the basins of

attraction are larger and more complicated in the

three-state than in the two-state GRN, interestingly,

the same attractors are reached in both cases (Fig-

ure 2). We then addressed if both GRN respond in

the same way to systematic perturbations of the

logical rules.

Figure 3. Updated floral network of A. thaliana. Nodes

correspond to genes or proteins, and edges correspond to

regulatory interactions (arrows are positive and blunt-end

are negative). See also Espinosa-Soto and others (2004).
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We mutated each of the outputs of all logical

rules and followed the dynamics, counting the

number of the original point attractors that were

conserved after the perturbation (Table 1).

Although the W space is quite different for both

GRN, it is interesting to note that the qualitative

behavior of the two networks is almost identical

with respect to the number of point attractors

recovered, and both GRN are quite robust. As ex-

pected, genes with more outputs are the most stable

ones, whereas the genes with fewer outputs are the

most sensitive ones. Although it makes functional

sense that attractors are buffered against perturba-

tions to most connected genes, these could also be

older and hence have had more time to accumulate

connections. Alternatively, robustness of the GRN

to perturbations in these gene logical functions may

have been selected for. As discussed in Espinosa-

Soto and others (2004), it seems that the new

attractors are not very different from the original

ones.

Themes and Variations in
Eudicotyledoneous Flower Evolution

Our previous studies had suggested that the GRN

that underlies cell-fate determination during floral

organ specification constitutes a robust develop-

mental module or subnetwork that may underlie

the widely conserved basic floral plan of eudicoty-

ledoneous flowering plants. Furthermore, compar-

ative analyses of flower patterning and floral organ

determination gene network components and

interactions suggest that this subnetwork has per-

sisted over long periods irrespective of the evolution

of the rest and largely uncovered molecular com-

ponents that interact with this subnetwork (Ferrario

Table 1. Results of Systematically Mutating each Output of All Logical Rules in the Three and Two State
Networks

3 states Number of point attractors recovered

Total number of perturbationsGene 4 5 6 7 8 9 10

FUL 0 0 2 4 0 0 12 18

FT 1 0 1 0 0 0 0 2

AP1 0 0 2 4 0 0 102 108

EMF1 1 0 1 0 0 0 1 3

LFY 0 0 2 3 0 1 102 108

AP2 1 0 1 0 0 0 1 3

WUS 0 0 0 1 2 0 9 12

AG 0 0 0 4 0 0 5180 5184

TFL1 0 0 2 3 1 0 66 72

PI 0 0 0 0 0 2 970 972

SEP 1 0 1 0 0 0 1 3

AP3 0 0 0 0 0 4 1940 1944

TOTAL 4 0 12 19 3 7 8384 8429

2 states Number of point attractors recovered Total number of perturbations

Gene 4 5 6 7 8 9 10

FUL 0 0 1 2 0 0 1 4

FT 1 0 1 0 0 0 0 2

AP1 0 0 1 2 0 0 13 16

EMF1 1 0 1 0 0 0 0 2

LFY 0 0 1 1 0 1 13 16

AP2 1 0 1 0 0 0 0 2

WUS 0 0 0 1 2 0 5 8

AG 0 0 0 2 0 0 126 128

TFL1 0 0 1 1 0 0 14 16

PI 0 0 0 0 0 2 62 64

SEP 1 0 1 0 0 0 0 2

AP3 0 0 0 0 0 3 125 128

Total 4 0 8 9 2 6 359 388

The columns list the number of point attractors recovered of the total (last column) when a rule is mutated. No rule recovered 0, 1, 2, or 3 point attractors when mutated.
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and others 2004). These other components should

underlie other, relatively more variable aspects of

flower morphology (symmetry, organ number,

organ color, etc). If this hypothesis is true, then the

floral GRN should be conserved among most eudi-

cotyledoneous species, and this could be tested

experimentally.

The GRN model may also be a basis for explora-

tions of evolutionary differences in network archi-

tecture between A. thaliana and other species.

Petunia hybrida Vilm. is another experimental plant

system in which the overall network of cell fate

determination during flower organ development

seems to be conserved with respect to A. thaliana

(Ferrario and others 2004). Nevertheless, P. hybrida

B-gene mutant phenotypes are different from those

described in A. thaliana because these genes are

duplicated in the former species. Interestingly, the

A. thaliana GRN with duplicated B genes recov-

ered the observed expression profiles observed in

P. hybrida floral organ primordial cells under wild

type and also when the node corresponding to the

P. hybrida AP3 ortholog was simulated as mutated

(Espinosa-Soto and others 2004). This result further

validates the model and suggests that the GRN

underlying floral organ cell-fate determination is

robust also to gene duplications.

Models that couple the floral GRN dynamics in

explicit spatial domains will be useful in exploring

possible mechanisms underlying the divergent floral

patterns and the role of ABC genes among basal

angiosperms. Preliminary analyses of a single-cell

stochastic version of the GRN model considered

here suggest that the temporal sequence with which

floral organ primordia fate is determined may result,

at least in part, from the dynamics of the organ

specification regulatory network studied in the face

of stochastic noise (Alvarez-Buylla, Chaos, Cortés,

Espinosa-Soto, and Padilla-Longoria, unpublished

work).

An extension of this model will be useful to

postulate hypotheses underlying the variations of

floral organs and ABC gene expression patterns

observed among angiosperms. Probably the most

striking floral organ arrangement is that observed in

the endemic heterotrophic species of the monocot-

yledons, Lacandonia schismatica E. Martı́nez & Ramos

(Vergara-Silva and others 2003; Ambrose and oth-

ers 2006), which has a homeotic inversion of sta-

mens and carpels with the latter in the third rather

than the fourth central whorl. Spatiotemporal

models that explicitly consider the type of GRN

model proposed here will be needed to address

which mutations may underlie this unique floral

phenotype.

Although 75% of angiosperms are eudicotyledo-

neous, ABC gene-expression patterns and floral

organ identities and arrangements are more variable

among the basal flowering plants. Recently, Kim

and collaborators (2005) reported that (1) the

expression pattern of AG (a C class gene) of basal

angiosperms is quite similar to that observed in core

eudicotyledoneous species, (2) AP3 and PI (B class

genes) homologs seem to have a wider spatial

expression pattern in basal angiosperms than that

observed in eudicotyledoneous species, and (3) the

expression pattern of AP1 (an A class gene) differs

greatly from that observed in eudicotyledoneous

plants. Coincidentally, the floral organs that are

specified by the A and B genes also show the most

divergent patterns with respect to those character-

istic of the core eudicotyledoneous species. For

example, in the basal angiosperm Nuphar advena

(Aiton) W. T. Aiton, the outer perianth organs are

green and sepal-like whereas the inner perianth

organs are more like petals because they are brightly

colored. However, another basal angiosperm,

Asimina longifolia Kral., has a perianth that is well

differentiated into sepals and petals (Kim and others

2005).

This leads to the question of whether GRN

models represent useful frameworks for unravelig

the molecular evolution of flower patterns. Inter-

estingly, the basins of attraction of the reproductive

organs that seem to be the most stable among an-

giosperms are also the largest and, in consequence,

the most stable in our simulations. This could have a

historical explanation, and it could imply that the

genes and/or interactions involved in the develop-

ment of stamens and carpels evolved first, whereas

those underlying sepal and petal specification arose

later during evolution. The variation observed

among basal angiosperms can reveal the unstable

footsteps of the assemblage of the floral organ

specification GRN that occurred during the evolu-

tion of the early lineages represented by extant

basal angiosperms. The use of formal GRN models

may help explore these hypotheses.

Our formal and dynamic GRN approaches suggest

that the emergence of structures could have been

the result of relatively slight modifications in GRN.

New floral organs may have arisen as additional

genes were added to a primitive network that

originally yielded only reproductive structures. Data

from gymnosperms (Sundstrom and Engstrom

2002) does indeed suggest that part of the angio-

sperm floral organ GRN could have been present

before the origin of flowering plants. Adding a gene

to the GRN may multiply the attractors and enlarge

the potential adaptative landscape. The origin of
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sepals and petals could have been the result of such

a process, and this could have expanded the mor-

phospace on which natural selection could act,

yielding new evolutionary possibilities. If our

rationale holds, perturbation analyses of an explic-

itly spatiotemporal model of coupled GRN could

reveal which are the most stable steady states of the

network and hence the probable primitive core

within it that has remained unchanged during long

evolutionary times. Such an approach not only al-

lows for much more flexibility but also seems more

realistic in evolutionary terms than postulating that

the emergence of a new structure has relied on

addition of genes from A to Z endlessly. It also al-

lows for more specific predictions that could be first

tested in silico and then in vivo by pursuing com-

parative analyses of key genes within the GRN in

species selected according to their phylogenetic po-

sition in the tree of angiosperm evolution.

Cell identity attainment can be conceptualized as

the product of a series of developmental decisions in

which alternative gene activity patterns are ac-

quired. The ABC model succeeded as a mechanistic

proposal of floral organ specification because it

showed that floral organ cell identity could be

interpreted as the outcome of two developmental

decisions: A or C gene activity, and B gene activity

or inactivity (hereafter ‘‘ABC decisions’’). Despite

new discoveries on genes involved in floral mor-

phogenesis and their interactions, the logic behind

the ABC model remains unaltered. We now know

that, in wild-type plants, the ABC decisions depend

on an earlier decision: the floral or non-floral mer-

istem decision (F-NF decision), in which genes such

as LFY and TFL1 are involved. A consequence of the

F-NF decision is the upregulation of the SEP genes,

because LFY promotes their expression (Schmid and

others 2003). In later events, on the other hand,

ovule identity genes, such as SEEDSTICK (Pinyopich

and others 2002) seem to require C class gene

activity as a necessary condition, because C mutants

lack ovules. Hence, a hierarchical series of decisions

in which some can only be taken if there is a certain

outcome in a previous one seems to account for

floral cell identity attainment. Therefore, as data

accumulate, it is becoming clear that the develop-

mental decisions during flower development con-

sidered in the ABC model hold, despite the fact that

additional earlier and later developmental decisions

have been discovered.

On the other hand, the inclusion of factors that

provide positional information and that bias the

ABC decisions, such as UFO (Parcy and others 1998)

and WUS (Lenhard and others 2001; Lohman and

others 2001), suggest that these genes may be key

inputs for determining the specific time and site

where the combinations of gene activities consid-

ered in the ABC model are established. Explicitly

spatial models that consider this will be useful to

understand the mechanisms underlying the

observed spatiotemporal patterns of ABC gene

expression. In this context, the ABC model promises

to continue to be a valid and useful core framework

for understanding floral organ pattern, develop-

ment, and evolution
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Appendix I. Corrections of GRN in
Espinosa-Soto, Padilla-Longoria and
Alvarez-Buylla 2004

We list some errors detected in Espinosa-Soto and

others (2004). The truth table for FT on page 2925

has two outcomes, 0 or 1, which defines FT as a

binary gene; nevertheless, on the same page in the

truth table of AP1, FT has three values which is a

contradiction. A closer look at the later truth table

reveals that for the first rule of AP1 the state of FT has

no effect on AP1 because it can be any state. For the

second and the third rules, the state of FT is the

same, which is active. In addition, for the other rules

(3, 4 and 5) the state of FT can be non-active or

medium active. Therefore, to avoid that contradic-

tion between the truth table of FT and its states

defining the truth table of AP1 we made some

changes. The first rule remains the same. In the

second and the third rules of AP1, we substituted the

value of 2 by 1, which means it is active. As the other

rules of AP1 do not make a distinction between the

state of no activity and the state with medium

activity, we changed them by 0 which means no

activity. This contradiction does not affect the results

obtained in Espinosa-Soto and others (2004).
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The truth table of WUS (page 2926) has three

inputs, which are WUS, AG, and SEP. The gene

network architecture on the same page depicts that

the inputs of WUS are just SEP and AG, so it needs a

connection between WUS and itself to be coherent

with the truth table. The printed truth table of PI in

Espinosa-Soto and others (2004) had a few mistakes

and here we present the correct truth table of PI

(Table A1). In the two latter cases the correct truth

tables shown here were used in the simulations

supporting the results of Espinosa-Soto and others

(2004).

In the logical rules for LFY the evidence for the

fact that in ap1 and ap1cauliflower (cal) double mu-

tants, LFY expression is reduced, Bowman and

others (1993) besides Piñeiro and Coupland (1998)

should be cited. In the logical rules for AP1 the

evidence for the direct activation of AP1 by LFY that

binds to the AP1 promoter was first documented by

Parcy and collaborators (1998) and then by Wagner

and collaborators (1999). On APETALA3 logical

rules, the evidence for the fact that in lfy ap1 double

mutants, AP3 mRNA is not detected, but in ap1

mutants, AP3 is expressed as in wild-type plants

Weigel and Meyerowitz (1993) as well as Hill and

collaborators (1998) should be cited. On PI logical

rules, the evidence that the level of PI mRNA and its

domain of expression are severely reduced in lfy-6

null mutants is found in Weigel and Meyerowitz

(1993) as well as in Honma and Goto (2000). On

AGAMOUS logical rules, the evidence that in strong

ap2 mutant alleles, AG RNA accumulates in the four

floral whorls, and in ap2-2 and ap2-9 alleles, 1st

whorl organs are converted into carpels or carpel-

loid sepals, and 2nd whorl organs are absent was

first presented in Bowman and collaborators (1989,

1991) and later by Deyholos and Sieburth (2000).

Also, support for the fact that AG, PI, AP3, WUS, and

others are transcriptions factors is also found in

Parcy and collaborators (1998) and Lohmann and

collaborators (2001) as well as in Coen and Meye-

rowitz (1991) and Mayer and collaborators (1998).

Appendix II. Reduction of the
Three-state to a Boolean GRN

To perform this reduction we had to decide to which

state, active or inactive, the medium active state

corresponded. To translate each rule for all truth

tables we proceeded as follows: if the state was 2 it

was changed to 1, if it was 0 it remained in that

state. For some rules a combination of two states,

gave the same output. Those cases were combina-

tions of 0 and 1, and 1 and 2. In such cases, the first

one was translated to 0 because there was no dis-

tinction between inactivation and intermediate

activation, and in the second one it was translated

to 1 because the rule gave the same output when

the input was either 1 or 2. If the state was just 1 we

assigned an uncertainty indicator because we could

not assign a state of activity (1) or inactivity (0). For

all possible inputs of each gene (for example, for a

gene with three input genes there are 23 different

inputs), we assigned an output according to the

translated rules (that is, the rule that corresponds to

that specific combination of inputs). Because of the

reduction of the states it is possible that a rule

governs an input that is already governed by other

rules. In these cases there are two possibilities.

Overlapping rules can be either redundant, if all

rules give the same outputs, or contradictory, if

some of all the overlapping rules yield different

outputs. If the outputs of all the rules for a particular

combination of inputs are unassigned, we call it a

total ambiguity. If the output of one rule has a

defined state, but one rule governing the same

combination of inputs has an undefined state, we

took the output of the defined rule and we call this

case a partial ambiguity.

The total number of combinations of inputs of all

genes from the original network with three states

was 5500, whereas the Boolean network has only

Table A1. Correct Truth Table of PI

AP1 LFY AG PI SEP AP3 PI

0 0 0 x x x 0

0 0 1 0 x x 0

0 0 1 1 0 x 0

0 0 1 1 1 0 0

0 0 1 1 1 1 1

0 1 0 x x 0 0

0 1 0 x x 1 1

0 1 1 x x x 1

1 0 0 0 x x 0

1 0 0 1 0 x 0

1 0 0 1 1 0 0

1 0 0 1 1 1 1

1 0 1 0 x x 0

1 0 1 1 0 x 0

1 0 1 1 1 0 0

1 0 1 1 1 1 1

1 1 0 x x 0 0

1 1 0 x x 1 1

1 1 1 x x x 1

An ‘‘x’’ means any state (that is,: 0 or 1).
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772 combinations of inputs for all genes. For

example, FULwas regulated by two genes with three

entries for each in the three-state case, that yielded 9

different combinations of inputs. In contrast, in the

Boolean translation, FUL is still regulated by the

same two genes, but now these two have only two

states each, yielding four combinations.

After assigning all states of all genes as men-

tioned, we found 96 total ambiguities and only

1 contradiction. We tested several combinations for

these 97 problematic cases to try to recover the

same behavior of the network with 3 states, starting

with all of them with the state of inactivity (0),

continuing with different combinations of 0 and

1, and finally assigning all of them a state of activity

(1). When we assigned to all the problematic states

the value of activity, we obtained exactly the same

dynamics as for the original network: 10 point

attractors with the same pattern of gene activity.

This can be understood in two ways. The obser-

vation that some products of certain genes differ in

concentrations was the cause of the abstraction of

the 3 states. If a particular threshold to activate a

gene is surpassed, then the gene will enter in a state

of activation. As we do not know the activation

threshold of the genes, it could happen that

regardless there is a marked difference in the con-

centration of the products of the genes; in both

cases, medium activation and activation, the con-

centration surpasses the specific gene activation

threshold. Consequently, we will obtain the same

dynamics with the three-state network as that from

the two-state network. On the other side, it is pos-

sible that the observed difference in gene product

quantities is important and meaningful in the con-

text of the system, but the robustness of the archi-

tecture network is sufficient to tackle this alteration

of the parameters in gene product concentrations

and to perform a normal behavior. This approach is

a robustness analysis because the network is robust

to this magnitude of change.
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